Built for Rigor and Engagement

The North Carolina Standard Course of Study demands instruction that balances conceptual understanding, procedural skills and fluency, and application. Ready Mathematics achieves this balance with lessons that develop understanding and procedural fluency in tandem so students can easily apply what they have learned to new situations.

The Mathematical Practices Handbook helps students develop the habits of mind used by proficient mathematical thinkers. Presented in student-friendly language, it serves as a reference for students throughout the year.

Skills and Strategy lessons focus on helping students acquire and apply efficient procedures for calculation and symbolic representation. They teach a skill, procedure, or algorithm using models and multiple representations to connect to understanding.

Lessons that begin with Understand in the title focus on developing conceptual understanding. Occurring at critical points in the instruction sequence, these lessons help students connect new concepts to familiar ones as they learn new skills and strategies.

<table>
<thead>
<tr>
<th>Unit 1</th>
<th>Ratios and Proportional Relationships</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Ratios</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Understand Unit Rate</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Equivalent Ratios</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>Solve Problems with Unit Rate</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>Solve Problems with Percent</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Interim Assessment</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NCSCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC.6.RP.1</td>
</tr>
<tr>
<td>NC.6.RP.2, NC.6.RP.1, NC.6.RP.3</td>
</tr>
<tr>
<td>NC.6.RP.3</td>
</tr>
<tr>
<td>NC.6.RP.3</td>
</tr>
<tr>
<td>NC.6.RP.4, NC.6.RP.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit 2</th>
<th>The Number System</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Understand Division with Fractions.</td>
<td>54</td>
</tr>
<tr>
<td>7</td>
<td>Divide with Fractions</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>Divide Multi-Digit Numbers</td>
<td>72</td>
</tr>
<tr>
<td>9</td>
<td>Add and Subtract Decimals</td>
<td>84</td>
</tr>
<tr>
<td>10</td>
<td>Multiply and Divide Decimals</td>
<td>94</td>
</tr>
<tr>
<td>11</td>
<td>Common Factors and Multiples.</td>
<td>106</td>
</tr>
<tr>
<td>12</td>
<td>Understand Positive and Negative Numbers</td>
<td>118</td>
</tr>
<tr>
<td>13</td>
<td>Absolute Value and Ordering Numbers</td>
<td>124</td>
</tr>
<tr>
<td>14</td>
<td>The Coordinate Plane</td>
<td>134</td>
</tr>
<tr>
<td>15</td>
<td>Add and Subtract Integers</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>Interim Assessment</td>
<td>158</td>
</tr>
</tbody>
</table>

Standards in boldface are the focus standards that address major lesson content.
Structure of a Ready Lesson*

Engaging Ready lessons develop mathematical reasoning through rigorous real-world problem solving as instruction. Ready provides ongoing opportunities for cooperative dialogue and mathematical discourse, strengthening students’ ability to use higher-order thinking and complex reasoning.

<table>
<thead>
<tr>
<th>Part of the Lesson</th>
<th>Teacher Actions</th>
<th>Student Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>• Allows student think time</td>
<td>• Perseveres in thinking about problems and questions</td>
</tr>
<tr>
<td></td>
<td>• Supports effective partner communication</td>
<td>• Actively listens to partners and whole class conversations</td>
</tr>
<tr>
<td></td>
<td>• Facilitates whole class discourse of student discussions</td>
<td>• Participates in small group and whole class conversations, politely critiquing the reasoning of others</td>
</tr>
<tr>
<td></td>
<td>• Guides students to connect multiple strategies</td>
<td>• Solves problems using multiple strategies or mathematical tools</td>
</tr>
<tr>
<td></td>
<td>• Encourages effort</td>
<td>• Recognizes mistakes as opportunities to learn</td>
</tr>
<tr>
<td></td>
<td>• Recognizes mistakes as opportunities for learning</td>
<td>• Applies learning to new problems</td>
</tr>
<tr>
<td>Modeled and Guided Instruction</td>
<td>• Observes student strategies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Asks questions to guide or correct understanding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Differentiates instruction as needed in stations or small groups</td>
<td></td>
</tr>
<tr>
<td>Guided Practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Practice</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The majority of the lessons in Ready Mathematics follow the format shown above.
What Does Ready Instruction Look Like?

The Think-Share-Compare instructional routine is the recommended framework for teaching most Ready Mathematics lessons. With this routine, teachers can easily and confidently engage students in discourse and the mathematical practices while using standards-aligned teaching practices.

Think-Share-Compare Routine

What Is It?
The Ready Think-Share-Compare Routine helps students achieve greater mathematical proficiency and rigor within a collaborative structure. Students develop greater understanding of mathematical models and strategies using think time, partner talk, individual writing, and whole class discourse.

When to Use It
Use the Think-Share-Compare Routine during the Introduction and Modeled and Guided Instruction sections of the Ready lessons.

Why It Matters
There are many ways to approach mathematical thinking and solutions to problems, but when only one way is presented, students may think they “didn’t do it right,” even when their solution process or thinking is accurate. Exposing students to a number of models and approaches helps them:

• Build mathematical confidence.
• Make connections between representations.
• Develop flexible thinking.
• Deepen and extend conceptual understanding.
• Construct viable arguments and politely critique the reasoning of others.
• Stay engaged, focused, and motivated.

Ready-made routine slides are available on the Teacher Toolbox for most lessons.
Think-Share-Compare Routine

1. Make Sense of the Problem
 Read and understand the problem or question. Think about the key information.

2. Solve and Support Your Thinking
 Include pictures, models, and/or explanations in your solutions. If you have time, show another way to solve it.

3. Discuss
 Explain your thinking to a partner. Discuss how your strategies are alike and different.

4. Compare
 Compare your strategies with the class, including the strategies in the Ready book.

5. Connect and Reflect
 Complete and discuss the Connect It questions.

6. Apply
 Apply what you have learned to a new problem. Be sure to support your answer.

“Talking can help us better understand ways to solve a problem.”

Read the problem together as a class. Make sure students understand what they are being asked to do. Ask a few students to describe what the problem is about. Have several students explain what the problem is asking them to do and what information they know.

Allow enough time for students to persevere as they think through their solutions. Make sure students are showing the models and strategies they use.

Have partners discuss their strategies. Circulate to hear conversations and select and sequence solutions to discuss with the whole class.

Call on students to share their solution strategies with the class. Have students open their books and connect their strategies to other students’ strategies as well as those in the book.

Have students complete the Connect It questions or Reflect question from the Ready Instruction book. Choose key questions to discuss as a class.

Use Try It questions or practice problems corresponding to the lesson in Practice and Problem Solving.

©Curriculum Associates, LLC Copying is not permitted
Teacher Resource Book: Lesson Overview

Use the information on these pages to plan whole class instruction, ongoing monitoring, and small group differentiation.

NCSCS Focus sets expectations for what students should understand and be able to do.

Prerequisite Skills can be used to monitor the understanding of students at different levels and to scaffold instruction for small group discussions.

The **Learning Progressions** set a context for the standards of the lessons based on how the standard builds on prior knowledge, particularly from the previous grades, and how it leads to expectations for the next year.
Lesson Pacing Guide

The day-by-day pacing guide can be used for planning whole class and small group instruction, for ongoing monitoring, and for individualized learning with Ready and i-Ready blended learning options.

Plan teacher-led **whole and small group instruction**. Practice can be assigned after every section of the lesson in class, after school, or at home with Practice and Problem Solving. Assess students’ mastery of lesson content and identify the need for reteaching with lesson quizzes.

Plan **small group differentiation** using *Ready Instruction* prerequisite lessons for in-depth instruction from earlier grades to review prerequisite concepts or fill in gaps in student knowledge, and teacher-led Tools for Instruction activities for small groups of students requiring additional instruction on a prerequisite or on-level skill.

Plan students’ **personalized learning** using *i-Ready’s* adaptive instruction to remediate and fill gaps.
Student Book: Introduction

The Introduction presents a problem or poses a “big idea” question that connects what students already know to what they are about to learn.

Use What You Know (whole class)

Teacher’s Role As students answer the questions on the page, ask them to explain their reasoning and help them see how they can use what they already know to solve the problem.

Use Real World Connections in the Teacher Resource Book (TRB) for active learning as students connect the math of the lesson to their own experiences. Encourage students from other cultures to share their experiences.

Student’s Role Students who come to understand that they can apply what they have already learned to new problem situations develop a deeper understanding of mathematical relationships. This understanding allows them to see mathematics as interconnected concepts and skills rather than as separate, unrelated ideas.

Lesson 5 Solve Problems with Percent

You have learned how to make tables of equivalent ratios to solve problems. Take a look at this problem.

On the first math test, Keiko answered 19 out of 25 questions correctly. On the second test she got 17 out of 20 correct. On which test did she get a better grade?

Use the math you already know to help solve the problem.

a. Write a ratio in fraction form to compare the number correct to the total questions for each test.

b. Can you compare these two ratios as they are written? Explain why or why not.

c. Look at the table. How are 50, 75, and 100 related to 25?

What do you need to do to complete the table?

Now complete the table.

d. How are 40, 60, 80 and 100 related to 20?

Use this information to complete a table of equivalent ratios for the second test.

e. Look at the two tables. Which ratios can you use to compare the test results? Why?

f. On which test did Keiko get a better grade? Explain.
The ratios on the previous page, \(\frac{76}{100} \) and \(\frac{85}{100} \), can be expressed as fractions, decimals and percents. A **percent** is a rate “for every 100” or “per 100.” The symbol \(% \) signifies percent.

Base-ten models can be used to represent fractions, decimals, and percents.

![Base-ten models](image)

<table>
<thead>
<tr>
<th>Fraction</th>
<th>1/10</th>
<th>1/20</th>
<th>1/5</th>
<th>1/100</th>
<th>1/25</th>
<th>1/50</th>
<th>3/100</th>
<th>3/4</th>
<th>75/100</th>
<th>1/1</th>
<th>1/100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal</td>
<td>0.10</td>
<td>0.05</td>
<td>0.20</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>0.30</td>
<td>0.75</td>
<td>0.75</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Percent</td>
<td>10%</td>
<td>5%</td>
<td>20%</td>
<td>1%</td>
<td>4%</td>
<td>2%</td>
<td>30%</td>
<td>75%</td>
<td>75%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Here are some fractions, decimals, and percents that you will see and use often.

Sometimes it is easier to use an equivalent fraction when given a decimal or percent.

For example: What is \(0.25 \times 80 \)?

Think: What is \(\frac{1}{4} \) of 80? \(80 \div 4 = 20 \)

Reflect

1. Why do you think percents are used to compare ratios when the wholes are different?

Find Out More

Teacher’s Role Discuss as a class, guiding students to see how the questions they just answered and the formal mathematics presented are related. Use the suggestions in the Step By Step to help guide the discussion. Use the *Hands-On Activities* in the TRB to reinforce a skill or concept through another, often concrete, approach. Hands-On Activities can help ELL and other students visualize concepts.

Student’s Role As they engage intellectually with the content, students build foundational understanding of what they will be learning in the lesson.

Reflect

Student’s Role By summarizing what they have learned in their own words, students are encouraged to look for and make use of structure.

Teacher’s Role Have students read and discuss the *Reflect*, then write an answer in their own words. Observe responses to assess students’ understanding.

Teacher’s Role Assign *Practice and Problem Solving* as independent work in class or at home for additional practice with key prerequisite skills of the lesson.
The Modeled and Guided Instruction supports students as they explore different ways of solving a real-world or mathematical problem.

Picture It/Model It (whole class)

Teacher’s Role
Read the problem at the top of the page, then work through the Picture It and Model It as a class. Pose the scaffolded questions to guide students' understanding of the approaches on the page.

Use Mathematical Discourse questions in the Teacher Resource Book (TRB) to promote thoughtful dialogue about the models and strategies. Encourage the exchange of ideas among students by having them suggest solution methods that differ from those shown. Have students share which solution strategy works best for them and explain why.

Student’s Role
As they discuss different ways of representing a given problem, students begin to understand there are multiple access points from which they can draw on prior knowledge.

Looking at other ways to solve the problem encourages students to think in ways they would not have otherwise, building flexibility in their ability to solve problems.
Lesson 5: Solve Problems with Percent

Connect It (whole class)

Teacher’s Role Discuss the Connect It as a class, guiding students to make the connection between the representations on the previous page and a more general symbolic representation of the problem and solution.

Use SMP Tips in the TRB to help students advance through the content, critically analyze information, and use complex cognitive thinking. This reflects the expectation that students are actively engaged in doing mathematics rather than passively receiving mathematics instruction.

Student’s Role Students who engage with the symbolic representations by making and defending conjectures are able to apply what they have learned to solve similar problems. This helps them understand their own progress as they look for approaches that work best for them and find what they still need feedback on.

Try It (small group)

Student’s Role Discussing how the responses to the Connect It relate to the problem they are about to solve adds to students’ understanding as they apply the newly learned skill to a new situation.

Teacher’s Role Have students read and discuss the Try It, then solve the problems on their own. Look for errors in student thinking and use the TRB Error Alerts to provide support.
Student Book: Guided Practice

The Guided Practice provides feedback to students as they share their thinking and find solutions to real-world problems.

Example (whole class)

Teacher’s Role Have students work together in small groups to respond to the *Pair/Share* question. Encourage students to explore multiple approaches and use both linguistic and nonlinguistic representations.

Student’s Role As students explain their solutions and strategies to their peers, they develop the understanding that there are many ways to formulate real-life situations as mathematical problems. Hearing other approaches guides them to look at each problem from multiple perspectives, enriching their understanding of the mathematics and helping them make connections.

Problems (small group)

Student’s Role Students work individually to represent their mathematical solutions in concrete, symbolic, or written form as they solve real-world problems.

In the *Pair/Share* discussion, students explain their solution pathways to others and respond to clarifying questions. This encourages students to examine their premises and build logical arguments.

Teacher’s Role Circulate and ask guiding questions that require students to elaborate on important information and summarize their thinking.

Lesson 5 Guided Practice

Practice Solving Problems with Percent

Study the example below. Then solve problems 23–25.

Example

At Sydney’s school, 300 of the 500 girls and 450 of the 600 boys attend the Spring Carnival. Which group has greater attendance?

Look at how you can use equivalent ratios and percents to solve the problem.

<table>
<thead>
<tr>
<th>Girls</th>
<th>Boys</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>500</td>
<td>600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>60%</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>60%</td>
<td>75%</td>
</tr>
</tbody>
</table>

Solution The boys have better attendance because 75% > 60%.

23 Cesar turned in his third research report. His teacher said that Cesar had completed 20% of the reports for the school year. How many research reports will he do during the school year?

Show your work.

Solution If you find equivalent ratios with the denominator of 100, you can use percents.

Pair/Share Why can’t you say, “450 > 300, so the boys have better attendance?”

Pair/Share Suppose you think of 20% as \(\frac{20}{100} \) or \(\frac{1}{5} \). How can you solve the problem using \(\frac{1}{5} \) instead of 20%?
Nia answered 35% of the 40 questions on a test incorrectly. How many incorrect answers did she have?

Show your work.

Solution

Andrei’s grandfather offered to give him a gift of 50% of the amount of money he saved in one year. Andrei saved $120 dollars. How much did his grandfather give him as a gift?

A $50
B $60
C $120
D $180

Mitch chose D as the correct answer. How did he get that answer?

What benchmark percent can you use to help find 35%?

I think that it would be easy to solve this problem using a fraction.

Is there only one way to use a benchmark fraction to solve this problem?

How can you show that your answer is 50% of 120?

Teacher’s Role Assign Practice and Problem Solving as independent work in class or at home for additional practice with all the skills of the lesson.
Lesson 5 Independent Practice

Solving Problems with Percent

Solve the problems.

1. Jason’s father bought a computer for $800. He made equal payments of 25% of the total cost. How much was each payment?
 A. $25
 B. $32
 C. $200
 D. $400

2. Antonio has read 147 pages of a book. He has completed 70% of the book. How many more pages does he need to read to finish the book?
 _______ pages

3. During the basketball season, Cory made 21 of the 60 baskets she attempted. Krista made 16 of the 40 baskets she attempted. Paula made 17 of the 50 baskets she attempted. Write the names of the players in order from the least percentage of baskets made to the greatest percentage of baskets made.

<table>
<thead>
<tr>
<th>Name</th>
<th>Name</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem (independent)

Student’s Role As students read each problem, they think about possible approaches, create a plan, and make decisions about how to represent the problem. Checking their work to be sure their answer makes sense prompts them to provide more complete responses.

Teacher’s Role As students work on their own, walk around the room to maintain student engagement and to monitor their progress and understanding.

Open-ended questions are an opportunity for students to show multiple approaches, and when appropriate, more than one correct response.

Use the Solution and DOK level or the scoring rubrics in the Teacher Resource Book (TRB) as a guide to the level of complex thinking each item requires.
Jackson’s mom limits the amount of time he is allowed to play video games. After Jackson plays for 9 minutes, his mom tells him that he has used up 30% of his time. Use benchmark percents to find how many more minutes Jackson can play before he uses all of his time.

Show your work.

Answer Jackson can play ____ more minutes.

Ashley has sold 70% of the 20 candy bars she is supposed to sell for her softball team. How many candy bars does she have left to sell?

Show your work.

Answer Ashley has ____ more candy bars to sell.
Teacher Resource Book

Point-of-use professional development and step-by-step instructional ideas help teachers address even the most challenging standards effectively.

The **At A Glance** explains what students will be doing on each page.

The **Step By Step** organizes content into appropriate chunks for student learning, and provides guiding questions about the key points within each chunk.

The **Mathematical Discourse** questions engage students and advance them through the content. They include answers as well as key ideas to listen for in student responses to facilitate further rich discussion.

SMP Tips highlight a particular Standard for Mathematical Practice within the lesson. This is an opportunity to have students refer to the Mathematical Practices Handbook at the front of their book and reflect on its use.

Lesson 5: Solve Problems with Percent

Modeled and Guided Instruction

At A Glance

Students use double number lines and tables to represent a situation in which a part and a percent are given. Then they revisit the problem on this page and use double number lines and tables to find the whole when a part and a percent are given.

Step By Step

- Read the problem at the top of the page as a class.

Picture It

- Draw students' attention to both the double number line in Picture It and the table in Model It.

Model It

- Help students understand why the 6 corresponds to 10 in both the double number line and the table by showing that $\frac{3}{4}$ and $\frac{5}{10}$ are equivalent. Have them suggest other ways to find the ratios needed by the double number line and the table.

Mathematical Discourse 1 and 2

- Make sure students understand that the answer to the question is the number of dollars that corresponds to 100%.

SMP Tip Model with Mathematics

As students compare the two models with each other and with the problem, they model with mathematics. Have students describe carefully and completely what each part of the model represents in the problem. (SMP 4)

Mathematical Discourse 3

1. Notice that the number line increases by increments of 10% and the table by different increments. Explain which is correct. Both are. All the ratios shown will simplify to the same amount.
2. Why is it important for the scale number line to increase by the same amount from line to line, but it is not important for the table to do so as well? The number line is visual. Because the vertical marks are the same distance apart, the numbers must also increase by the same amount. In the table, you just find equivalent ratios until you get one with the second quantity. You don't have to find all the ratios in between the ones you already know.

English Language Learners

- Write the words part and whole on the board. Have students use their own words to describe each.
- Model examples of part and whole: There are 28 students in the class and 17 ride the bus. The whole is 28 and the part is 17. Erin has 7 friends, and 3 live in houses and 4 live in apartments. The whole is 7 and the parts are 4 and 3.
- Call on each student to describe a situation involving a part and a whole and to identify each.
Lesson 5 Solve Problems with Percent

Step By Step

Connect It

• Read Connect It as a class.
• Work through the reasoning that explains how to find the number that corresponds to 100%. Have volunteers describe other ways to find the number that is the whole or 100%.
• When students describe how to find the whole when they know the part and the percent, encourage them to be specific about how they would label the number line or how they would find the values for the table.
• Have students complete Try It on their own.

Hands-On Activity

Try It

Solution

500. Students may draw a double number line showing that 30% lines up with 150 and 100% lines up with 500. They may also use a table of equivalent ratios.

Error Alert

Students who wrote 45 found 30% of 150; students who wrote 4,500 multiplied 150 and 30.

Try It Solutions provide complete explanations and include multiple solutions to show different approaches.

Hands-On Activity

Create a model to show the relationship between a part and the whole in a percent problem.

Materials: drawing paper, crayons, adhesive dots

• Display this to students: 15 is 30% of ___.
• Give each student 15 adhesive dots. Say that the 15 dots are 30% of an entire page of dots. Say that their task is to show how many dots would be on an entire page.
• Have students divide the paper into 10 portions, labeling them 10%, 20%, and so on to 100%. They should shade 3 portions to show 30%.
• Have them distribute the dots in the shaded (30%) area, placing 5 dots on each 10% portion. Note that 10% of the total is 5.
• Have students draw 5 circles on each of the remaining 10% portions and find the total number of dots and circles.
• Complete the statement given above to say the following: 15 is 30% of ___.
Teacher Resource Book

Point-of-use professional development and step-by-step instructional ideas help teachers address even the most challenging standards effectively.

Complete Solutions at point of use provide a correct response and model at least one way to solve the problem and include the DOK level of each question.

In the Quick Check and Remediation, an “exit” question is given to monitor understanding of the lesson content. A chart provides a list of incorrect answers based on common errors and gives specific remediation suggestions for each error.
Lesson 5 Solve Problems with Percent

Solutions

At A Glance

- **Independent Practice**
- **Self Check**

©Curriculum Associates, LLC Copying is not permitted.

Teacher Resource Book

Lesson 5

Solutions

4. Solution

21: Find the number of minutes that corresponds to 100% if 9 minutes corresponds to 30%; then subtract 9 from the total time. See possible student work on the facsimile page.
DOK 2

5. Solution

6. Multiply or use a table to find 70% of 20, then subtract from 20 to find the number left. See possible student work on the facsimile page.
DOK 2

Hands-On Activity

Create models of percents.
Materials: graph paper, colored pencils
- Have students multiply fractions to find \(\frac{1}{2}, \frac{1}{4}, \frac{1}{10}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5} \) and \(\frac{5}{6} \) of 100.
- Give each student 2 sheets of graph paper. They should outline a 10-by-10 grid in each quarter of the graph paper.
- Ask: What is half of 100? [50] Direct students to shade 50 of the squares in the first 10-by-10 grid.
- Have them write \(\frac{1}{2} = \frac{50}{100} = 0.50 = 50\% \) below the grid.
- Discuss why each is an accurate way to describe the shaded portion. Then, guide students through the process of illustrating \(\frac{1}{2} = \frac{25}{100} = 0.25 = 25\% \).
- Have students illustrate the other fractions independently. Discuss how students can use their illustrations to compare fractions.

Challenge Activity

Write and solve problems in which a percent and a part are known but the total is not.
Materials: index cards
- Tell students that they should write three problems in which the percent and the part are known but the total is not.
- Discuss why it might be easier to write the problems by starting with the total, or answer, and a percent and then find the part.
- Students should record each problem on the front of the card and the solution on the back. They should exchange cards with classmates and solve one another’s problems.

A **Challenge Activity** gives students who have mastered the skills and concepts of the lesson an opportunity to apply their understanding to more sophisticated problem solving.

A **Hands-On Activity** extends the concepts and skills of the lesson using common classroom manipulatives and group collaboration.

©Curriculum Associates, LLC Copying is not permitted.
Monitor Understanding in Ready® Mathematics

Ready Mathematics provides a comprehensive assessment system, as shown below and on pages A12–A13. This includes practical, easy-to-use progress monitoring tools embedded within instruction, highlighted on the table to the right.

Diagnose
Use i-Ready Diagnostic to diagnose individual student skill levels and identify instructional needs.

Monitor Understanding
Use the informal assessment opportunities in the Ready Student Book, Teacher Resource Book, and Teacher Toolbox to inform ongoing instruction.

Assess Mastery
Use i-Ready Standards Mastery or Ready Unit Assessments to evaluate student mastery of content at the lesson and unit level.

Measure Growth
Use i-Ready Diagnostic or Ready Assessments to track student progress toward end-of-year goals.
<table>
<thead>
<tr>
<th>Tool</th>
<th>What it does</th>
<th>How to use it</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Book</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Try It, Connect It, and Reflect</td>
<td>Prompts students to explain their thinking</td>
<td>Observe student understanding and respond with specific strategies for additional instruction and to support individual needs</td>
</tr>
<tr>
<td>Pair/Share</td>
<td>Encourages students to collaborate as they justify their reasoning and critique the reasoning of others</td>
<td></td>
</tr>
<tr>
<td>Independent Practice</td>
<td>Provides opportunities for students to demonstrate understanding as they apply lesson skills and concepts to solve problems</td>
<td></td>
</tr>
<tr>
<td>Teacher Resource Book</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Discourse and SMP Tips</td>
<td>Encourages classroom discussion so students share their thinking</td>
<td>Use the key topics provided to listen for student responses, provide immediate feedback to address misunderstandings, and support students with targeted remediation strategies and activities</td>
</tr>
<tr>
<td>Error Alerts</td>
<td>Explains a common computational error, the wrong answer it might produce, and explanations to help students avoid the error in the future</td>
<td></td>
</tr>
<tr>
<td>Quick Check and Remediation</td>
<td>Poses an “exit” question to check student understanding</td>
<td></td>
</tr>
<tr>
<td>Online Teacher Toolbox</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesson Quizzes</td>
<td>Assesses lesson concepts and skills using a variety of item formats</td>
<td>Evaluate mastery of lesson content</td>
</tr>
<tr>
<td>Mid-Unit and Unit Assessments</td>
<td>Assesses unit concepts and skills using a variety of item formats</td>
<td>Evaluate mastery of unit content</td>
</tr>
</tbody>
</table>